

Planet Red Sample ID: 2401APO0286.1375 Strain: Planet Red Matrix: Plant Type: Flower - Cured Source Batch #: AZ-10-010924-PLR

and a start was a st

Apollo Labs 17301 North Perimeter Drive Scottsdale, AZ 85255 (602) 767-7600 http://www.apollolabscorp.com Lic# 00000013LCRK62049775

Summary

Cannabinoids

Moisture (Q3)

Terpenes

Microbials

Pesticides

Heavy Metals

Test

Batch

1 of 5

Result

Complete

Complete

8.0% - Complete

Pass

Pass

Pass

Pass

Produced: Collected: 01/19/2024 01:27 pm

Received: 01/19/2024 Completed: 01/25/2024 Batch #: AZ-10-010924-PLR Harvest Date: 01/09/2024

AND THE REAL PROPERTY OF

Client CNCTD, LLC / Connected Cannabis Co. / Pahana, Inc. (Intended Poin Lic. # 00000018ESKD27426528

Date Tested

01/23/2024

01/24/2024

01/25/2024

01/23/2024

01/23/2024

01/23/2024

Lot #: AZ-10-010924-PLR Production Date: Production Method: Indoor

	and all the	17.00		North Contraction
		19 D.		
				Ro
	1 SA		SPACE I	215
		Sant	1. Con	AL ANT
Constant of	A ANT	3		
		29		and a
	5	Ser and a series of the series	R. B. Tall	四个17

Cannabinoids

Complete

25.2277% Total THC	<loq Total CBD</loq 		29.585 Total Canna	(03)	1.5724% Total Terpenes
Analyte LOD	LOQ	Result	Result		Q
%	%	%	mg/g		`
THCa	0.1000	28.4468	284.468		
Δ9-THC	0.1000	0.2798	2.798		
∆8-THC	0.1000	ND	ND		
THCV	0.1000	ND	ND		
CBDa	0.1000	<loq< th=""><th><loq< th=""><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th></loq<>		
CBD	0.1000	ND	ND		
CBDVa	0.1000	ND	ND		
CBDV	0.1000	ND	ND		
CBN	0.1000	ND	ND		
CBGa	0.1000	0.8589	8.589		
CBG	0.1000	<loq< th=""><th><loq< th=""><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th></loq<>		
CBC	0.1000	ND	ND		
Total THC		25.2277	252.2770		
Total CBD		<loq< th=""><th><loq< th=""><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th></loq<>		
Total		29.5856	295.856		

Date Tested: 01/23/2024 07:00 am

Bryant Kearl Lab Director 01/25/2024	oort@confidentlims.com (866) 506-5866 www.confidentlims.com	confident
--	---	-----------

KEEP OUT OF REACH OF CHILDREN. The product associated with the COA has been tested by Apollo Labs using validated state certified testing methodologies as required by Arizona state law. Values reported herein relate only to the specific sample of product submitted by Client for testing. Apollo Labs makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected levels of any compounds reported herein. This Certificate shall not be reproduced except in full, without the written approval of Apollo Labs.

Planet Red

Sample ID: 2401APO0286.1375 Strain: Planet Red Matrix: Plant Type: Flower - Cured Source Batch #: AZ-10-010924-PLR

Pesticides

17301 North Perimeter Drive Scottsdale, AZ 85255 Produced:

Collected: 01/19/2024 01:27 pm

Received: 01/19/2024

Completed: 01/25/2024

Batch #: AZ-10-010924-PLR

Harvest Date: 01/09/2024

Apollo Labs

(602) 767-7600 http://www.apollolabscorp.com Lic# 0000013LCRK62049775

2 of 5

Client CNCTD, LLC / Connected Cannabis Co. / Pahana, Inc. (Intended Poin Lic. # 0000018ESKD27426528

Lot #: AZ-10-010924-PLR Production Date: Production Method: Indoor

Pass

Analyte	LOQ	Limit	Mass	Q	Status	Analyte	LOQ	Limit	Mass	Q	Status
	PPM	PPM	PPM				PPM	PPM	PPM		
Abamectin	0.2500	0.5000	ND	M2	Pass	Hexythiazox	0.5000	1.0000	ND		Pass
Acephate	0.2000	0.4000	ND		Pass	Imazalil	0.1000	0.2000	ND		Pass
Acetamiprid	0.1000	0.2000	ND		Pass	Imidacloprid	0.2000	0.4000	ND	M1	Pass
Aldicarb	0.2000	0.4000	ND		Pass	Kresoxim Methyl	0.2000	0.4000	ND		Pass
Azoxystrobin	0.1000	0.2000	ND		Pass	Malathion	0.1000	0.2000	ND		Pass
Bifenazate	0.1000	0.2000	ND		Pass	Metalaxyl	0.1000	0.2000	ND		Pass
Bifenthrin	0.1000	0.2000	ND		Pass	Methiocarb	0.1000	0.2000	ND		Pass
Boscalid	0.2000	0.4000	ND		Pass	Methomyl	0.2000	0.4000	ND		Pass
Carbaryl	0.1000	0.2000	ND		Pass	Myclobutanil	0.1000	0.2000	ND		Pass
Carbofuran	0.1000	0.2000	ND		Pass	Naled	0.2500	0.5000	ND		Pass
Chlorantraniliprole	0.1000	0.2000	ND		Pass	Oxamyl	0.5000	1.0000	ND		Pass
Chlorfenapyr	0.5000	1.0000	ND		Pass	Paclobutrazol	0.2000	0.4000	ND		Pass
Chlorpyrifos	0.1000	0.2000	ND		Pass	Permethrins	0.1000	0.2000	ND	M2	Pass
Clofentezine	0.1000	0.2000	ND		Pass	Phosmet	0.1000	0.2000	ND		Pass
Cyfluthrin	0.5000	1.0000	ND		Pass	Piperonyl	1.0000	2.0000	ND		Pass
Cypermethrin	0.5000	1.0000	ND		Pass	Butoxide					
Daminozide	0.5000	1.0000	ND	M1	Pass	Prallethrin	0.1000	0.2000	ND		Pass
Diazinon	0.1000	0.2000	ND		Pass	Propiconazole	0.2000	0.4000	ND	M2	Pass
Dichlorvos	0.0500	0.1000	ND		Pass	Propoxur	0.1000	0.2000	ND		Pass
Dimethoate	0.1000	0.2000	ND		Pass	Pyrethrins	0.5000	1.0000	ND		Pass
Ethoprophos	0.1000	0.2000	ND		Pass	Pyridaben	0.1000	0.2000	ND		Pass
Etofenprox	0.2000	0.4000	ND	M2	Pass	Spinosad	0.1000	0.2000	ND	M1	Pass
Etoxazole	0.1000	0.2000	ND		Pass	Spiromesifen	0.1000	0.2000	ND		Pass
Fenoxycarb	0.1000	0.2000	ND		Pass	Spirotetramat	0.1000	0.2000	ND		Pass
Fenpyroximate	0.2000	0.4000	ND		Pass	Spiroxamine	0.2000	0.4000	ND	M1	Pass
Fipronil	0.2000	0.4000	ND		Pass	Tebuconazole	0.2000	0.4000	ND	M2	Pass
Flonicamid	0.5000	1.0000	ND		Pass	Thiacloprid	0.1000	0.2000	ND		Pass
Fludioxonil	0.2000	0.4000	ND		Pass	Thiamethoxam	0.1000	0.2000	ND		Pass
						Trifloxystrobin	0.1000	0.2000	ND		Pass

Date Tested: 01/23/2024 07:00 am

product submitted by Client for testing. Apollo Labs makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected levels of any compounds reported herein. This Certificate shall not be reproduced except in full, without the written approval of Apollo Labs.

Planet Red

Sample ID: 2401APO0286.1375 Strain: Planet Red Matrix: Plant Type: Flower - Cured Source Batch #: AZ-10-010924-PLR Apollo Labs 17301 North Perimeter Drive Scottsdale, AZ 85255

(602) 767-7600 http://www.apollolabscorp.com Lic# 0000013LCRK62049775

3 of 5

Pass

Produced: Client Collected: 01/19/2024 01:27 pm Received: 01/19/2024 Completed: 01/25/2024 Batch #: AZ-10-010924-PLR Production Date: Harvest Date: 01/09/2024

CNCTD, LLC / Connected Cannabis Co. / Pahana, Inc. (Intended Poin Lic. # 0000018ESKD27426528

Lot #: AZ-10-010924-PLR Production Method: Indoor

Microbials

Limit	Result	Status	Q
Detected/Not Detected in 1g	ND	Pass	
Detected/Not Detected in 1g	ND	Pass	
Detected/Not Detected in 1g	ND	Pass	
	Detected/Not Detected in 1g Detected/Not Detected in 1g	Detected/Not Detected in 1g ND Detected/Not Detected in 1g ND	Detected/Not Detected in 1g ND Pass Detected/Not Detected in 1g ND Pass

Analyte	LOQ	Limit	Result	Status	Q
	CFU/g	CFU/g	CFU/g		
E. Coli	10.0	100.0	< 10 CFU/g	Pass	

Date Tested: 01/23/2024 12:00 am

Mycotoxins					No	ot Tested
Analyte	LOD	LOQ	Limit	Units	Status	Q

Date Tested:

Heavy Metals Pass Analyte LOD LOQ Limit Units Status Q PPM PPM PPM PPM Pass Arsenic 0.1330 ND 0.0660 0.4000 Cadmium 0.0660 0.1330 0.4000 ND Pass 0.1660 0.3330 1.0000 ND Pass Lead 0.0330 ND 0.0660 0.2000 Pass Mercury

Date Tested: 01/23/2024 12:00 am

All Rig Coa.support@confid Bryant Kearl (86	nfident LIMS hts Reserved dentlims.com 6) 506-5866 dentlims.com	confident
: rive a motor vehicle or operate heavy machinery. Marijuana smoke contains carcinogens and can lead to an increased risk for cancer, ta man and the unborn child. Using marijuana during pregnancy could cause birth defects or other health issues to your unborn child;	chycardia, hypertens	ion, heart attack,

KEEP OUT OF REACH OF CHILDREN. The product associated with the COA has been tested by Apollo Labs using validated state certified testing methodologies as required by Arizona state law. Values reported herein relate only to the specific sample of product submitted by Client for testing. Apollo Labs makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected levels of any compounds reported herein. This Certificate shall not be reproduced except in full, without the written approval of Apollo Labs.

) I () C LABS

Planet Red

Sample ID: 2401APO0286.1375 Strain: Planet Red Matrix: Plant Type: Flower - Cured Source Batch #: AZ-10-010924-PLR

Terpenes

Apollo Labs 17301 North Perimeter Drive Scottsdale, AZ 85255

Collected: 01/19/2024 01:27 pm

Received: 01/19/2024

Completed: 01/25/2024

Batch #: AZ-10-010924-PLR

Harvest Date: 01/09/2024

Produced:

(602) 767-7600 http://www.apollolabscorp.com Lic# 0000013LCRK62049775

4 of 5

Client

CNCTD, LLC / Connected Cannabis Co. / Pahana, Inc. (Intended Poin Lic. # 0000018ESKD27426528

Lot #: AZ-10-010924-PLR Production Date: Production Method: Indoor

Analyte	LOQ	Mass	Mass	Q	 Analyte	LOQ	Mass	Mass	Q	
	%	%	mg/g			%	%	mg/g		
D,L-Limonene	0.0010	0.4638	4.638	Q3	cis-Citral	0.0010	ND	ND	Q3	
β-Myrcene	0.0010	0.4401	4.401	Q3	cis-Farnesol	0.0010	ND	ND	Q3	
β-Caryophyllene	0.0010	0.2146	2.146	Q3	cis-Nerolidol	0.0010	ND	ND	Q3	
Linalool	0.0010	0.1024	1.024	Q3	Citronellol	0.0010	ND	ND	Q3	
β-Pinene	0.0010	0.0656	0.656	Q3	Eucalyptol	0.0010	ND	ND	Q3	
α-Humulene	0.0010	0.0510	0.510	Q3	y-Terpinene	0.0010	ND	ND	Q3	
α-Bisabolol	0.0010	0.0421	0.421	Q3	Geraniol	0.0010	ND	ND	Q3	
α-Pinene	0.0010	0.0382	0.382	Q3	Geranyl Acetate	0.0010	ND	ND	Q3	
trans-Nerolidol	0.0010	0.0314	0.314	Q3	Guaiol	0.0010	ND	ND	Q3	
α-Terpineol	0.0010	0.0225	0.225	Q3	Isoborneol	0.0010	ND	ND	Q3	
Endo-Fenchyl Alcohol	0.0010	0.0219	0.219	Q3	Isobornyl Acetate	0.0010	ND	ND	Q3	
D,L-Borneol	0.0010	0.0181	0.181	Q3	Isopulegol	0.0010	ND	ND	Q3	
Terpinolene	0.0010	0.0144	0.144	Q3	m-Cymene	0.0010	ND	ND	Q3	
Caryophyllene Oxide	0.0010	0.0120	0.120	Q3	Menthol	0.0010	ND	ND	Q3	
Camphene	0.0010	0.0108	0.108	Q3	L-Menthone	0.0010	ND	ND	Q3	
Valencene	0.0010	0.0072	0.072	Q3	Nerol	0.0010	ND	ND	Q3	
trans-beta-Ocimene	0.0010	0.0050	0.050	Q3	Nootkatone	0.0010	ND	ND	Q3	
Fenchone	0.0010	0.0047	0.047	Q3	o,p-Cymene	0.0010	ND	ND	Q3	
cis-beta-Ocimene	0.0010	0.0038	0.038	Q3	Octyl Acetate	0.0010	ND	ND	Q3	
Camphor	0.0010	0.0029	0.029	Q3	Phytane	0.0010	ND	ND	Q3	
3-Carene	0.0010	ND	ND	Q3	Piperitone	0.0010	ND	ND	Q3	
α-Cedrene	0.0010	ND	ND	Q3	Pulegone	0.0010	ND	ND	Q3	
α-Phellandrene	0.0010	ND	ND	Q3	Sabinene	0.0010	ND	ND	Q3	
α-Terpinene	0.0010	ND	ND	Q3	Sabinene Hydrate	0.0010	ND	ND	Q3	
α-Thujone	0.0010	ND	ND	Q3	Safranal	0.0010	ND	ND	Q3	
trans-β-Farnesene	0.0010	ND	ND	Q3	Terpinen-4-ol	0.0010	ND	ND	Q3	
Carvacrol	0.0010	ND	ND	Q3	Thymol	0.0010	ND	ND	Q3	
Carvone	0.0010	ND	ND	Q3	trans-Citral	0.0010	ND	ND	Q3	
Cedrol	0.0010	ND	ND	Q3	 Verbenone	0.0010	ND	ND	Q3	
					Total		1.5724	15.724		

Primary Aromas

Date Tested: 01/25/2024 12:00 am Terpenes analysis is not regulated by AZDHS.

Confident LIMS All Rights Reserved coa.support@confidentlims.com (866) 506-5866 www.confidentlims.com

CU1/25/2024 Marijuana use can be addictive and can impair an individual's ability to drive a motor vehicle or operate heavy machinery. Marijuana smoke contains carcinogens and can lead to an increased risk for cancer, tachycardia, hypertension, heart attack, and lung infection. Marijuana use may affect the health of a pregnant woman and the unborn child. Using marijuana during pregnancy could cause birth defects or other health issues to your unborn child; KEEP OUT OF REACH OF CHILDREN. The product associated with the COA has been tested by Apollo Labs using validated state certified testing methodologies as required by Arizona state law. Values reported herein relate only to the specific sample of

01/25/2024

product submitted by Client for testing. Apollo Labs makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected levels of any compounds reported herein. This Certificate shall not be reproduced except in full, without the written approval of Apollo Labs.

Planet Red

Sample ID: 2401APO0286.1375 Strain: Planet Red Matrix: Plant Type: Flower - Cured Source Batch #: AZ-10-010924-PLR Apollo Labs 17301 North Perimeter Drive Scottsdale, AZ 85255

Collected: 01/19/2024 01:27 pm

Received: 01/19/2024

Completed: 01/25/2024

Batch #: AZ-10-010924-PLR

Harvest Date: 01/09/2024

Produced:

(602) 767-7600 http://www.apollolabscorp.com Lic# 00000013LCRK62049775

5 of 5

Client

CNCTD, LLC / Connected Cannabis Co. / Pahana, Inc. (Intended Poin Lic. # 00000018ESKD27426528

Lot #: AZ-10-010924-PLR Production Date: Production Method: Indoor

Qualifiers Definitions

Qualifier Notation	Qualifier Description
11	The relative intensity of a characteristic ion in a sample analyte exceeded the acceptance criteria in subsection (L)(1) with respect to the reference spectra, indicating interference
L1	When testing for pesticides, fungicides, herbicides, growth regulators, heavy metals, or residual solvents, the percent recovery of a laboratory control sample is greater than the acceptance limits in subsection (K)(2)(c), but the sample's target analytes were not detected above the maximum allowable concentrations in Table 3.1 for the analytes in the sample
M1	The recovery from the matrix spike in subsection (K)(4) was: a. High, but the recovery from the laboratory control sample in subsection (K)(2) was within acceptance criteria
M2	The recovery from the matrix spike in subsection (K)(4) was: b. Low, but the recovery from the laboratory control sample in subsection (K)(2) was within acceptance criteria
М3	The recovery from the matrix spike in subsection (K)(4) was: c. Unusable because the analyte concentration was disproportionate to the spike level, but the recovery from the laboratory control sample in subsection (K)(2) was within acceptance criteria
R1	The relative percent difference for the laboratory control sample and duplicate exceeded the limit in subsection $(K)(3)$, but the recovery in subsection $(K)(2)$ was within acceptance criteria
V1	The recovery from continuing calibration verification standards exceeded the acceptance limits in subsection (J) $(1)(b)$, but the sample's target analytes were not detected above the maximum allowable concentrations in Table 3.1 for the analytes in the sample
Q2	The sample is heterogeneous, and sample homogeneity could not be readily achieved using routine laboratory practices – Used to denote that the sample as-received could not be fully pre-homogenized in packaging prior to microbiology analysis
Q3	Testing result is for informational purposes only and cannot be used to satisfy dispensary testing requirements in R9-17-317.01(A) or labeling requirements in R9-17-317

Notes and Addenda:

	Bryant Kearl Lab Director 01/25/2024	Confident LIMS All Rights Reserved coa.support@confidentlims.com (866) 506-5866 www.confidentlims.com	confident
ARIZONA DEPARTMENT OF HEALTH SERVICES' WARNING: Marijuana use can be addictive and can impair an individual's ability to drive a motor vehi and lung infection. Marijuana use may affect the health of a pregnant woman and the unb KEEP OUT OF REACH OF CHILDREN.	- cle or operate heavy machinery. Marijuana smoke contains carcinogens an iorn child. Using marijuana during pregnancy could cause birth defects or c	nd can lead to an increased risk for cancer, tachycardia, hypertensi other health issues to your unborn child;	ion, heart attack,

The product associated with the COA has been tested by Apollo Labs using validated state certified testing methodologies as required by Arizona state law. Values reported herein relate only to the specific sample of product submitted by Client for testing. Apollo Labs makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected levels of any compounds reported herein. This Certificate shall not be reproduced except in full, without the written approval of Apollo Labs.